RetroArch v1.1 – What to expect

Here’s a rundown on what you can expect from RetroArch v1.1, the next version of RetroArch to be released. Please bear with us that it has taken us so long since v1.0.0.2 to come up with a new official release. This v1.1 version has been long in the making to ensure that this new version will be a big major milestone for RetroArch in general.

So, here’s what the release will comprise of –

Going all PSP – PPSSPP core

RetroArch-0803-070141RetroArch-0803-095319

We have ported the popular PlayStation Portable emulator, PPSSPP, over to the libretro API. This marks the second big libretro implementation to be using libretro GL after Mupen64 Plus.

It is shaping up to be a very stunning release.  Linux users will especially appreciate the changes we’ve made which makes it possible to run PPSSPP in DRM/KMS mode (something which wasn’t possible in standalone since glew has X11 dependencies).

We’re aiming for two modes of operation. One mode will be in which the PPSSPP core functions much like standalone – where it saves everything inside a main PPSSPP assets directory and you install games from PPSSPP’s GUI. The other mode is more like a headless mode – the way every libretro core has functioned up until now. Saves will be saved in .srm form and it will be possible to directly boot ISOs/PBPs/.BINs without having to install them first from a GUI. There’s something to be said for both modes of operation.

We of course take no credit for any of the real emulation work in PPSSPP – the only thing we take credit for is porting it to the libretro API. We take nothing away of the accomplishments made by this team and we hope that the libretro port can be pushed upstream once it’s done. Please pay them a visit at http://www.ppsspp.org/ and support their efforts to improve PSP emulation – they’ve already come a long way in the two years it has been public.

We’ve made some screenshots of the core in action which you can check out here and on Twitter. We’re striving to expose as many of PPSSPP’s features as possible through core options for headless mode operation.

Needless to be said, we think this will be one of the main standout features of RetroArch v1.1. Hopefully it will open up people’s minds about how RetroArch and libretro doesn’t necessarily mean retro-grade graphics – some of these games  like Tekken 6 and Soul Calibur Broken Destiny don’t look far removed from their PS3 versions when upscaled to 2x or 3x. And to see it running as fluidly as it does in RetroArch without any audio breakup whatsoever or any frames dropped is a sight to behold.

The PPSSPP core will be available for PC (we’re aiming for Linux/OSX and Windows), and mobile (iOS/Android/Blackberry). After version 1.1 is released, we will research an Xbox 360 port.

Going all PSP – RetroArch PSP

BtwRRGxIUAAc91s

Just having a PSP core would be one thing, but RetroArch v1.1 is going to go one extra mile by also simultaneously appearing on the PSP itself.

Nearly all of the credit for this port should go towards aliaspider- I played only a minor but crucial part in the proceedings. He has really done a bang-up job porting over a great many new cores over that are useful for the PSP, as well as improving the performance of existing cores so that they run well on the PSP.

Right now we have greatly improved the performance of FCEUmm, NXEngine, Gambatte, Mednafen PC Engine (and others) so that they run fullspeed at PSP. Please keep in mind that a PSP for general purpose code is about two times as slow as a Raspberry Pi. So you’re dealing with a very weak CPU here, and so it necessitates specific PSP-specific code to really get the most out of its performance. And thankfully the libretro API allows for this – the libretro API doesn’t prevent you from taking advantage of PSP-specific hardware features in order to speed up performance inside a core.

Aliaspider also made a port of TempGBA over to the PSP. This is a Game Boy Advance emulator based on gpSP Kai (itself based on gpSP – a now defunct emulator by Exophase). There’s also a preliminary port of the popular CPS2/Neogeo emulator, but it isn’t yet done. No idea yet if this core will make it for the v1.1 release.

Like hunterk’s previous blog post indicated, the portability of RetroArch is really coming into its own now. With the PPSSPP core, it will be possible to run RetroArch PSP itself. So essentially what you have is that RetroArch PSP can be made to run inside a PSP emulator which itself is being run inside a native platform version of RetroArch. How much farther can we go from here? The future only knows.

New cores

Several new cores will be appearing. We made a port of fMSX and BlueMSX to the libretro API. This was a home computer released in the mid-1980s that was backed up by a consortium of companies (among them a little company called Microsoft and another small fish called Sony). Oddly enough, while it couldn’t really be considered a major worldwide success, it was relatively popular in Japan and (of all countries) The Netherlands. This home computer is also noteworthy for receiving some of the first games Hideo Kojima made in his career, such as Penguin Adventure (one of the first games I ever played BTW) and Metal Gear 1/2.

There will be RetroKeyboard support for these cores to sweeten the deal, but we will also try to have some sane default configs for the RetroPad per-game for some of the more popular games.

There will also be a Vectrex core, Vecx. This was another ’80s game console, and the main notability of this game console is that it wasn’t using sprite rasterization but rather vector-based. For all practical purposes it could be considered the first real home console capable of ‘3D graphics’.

BrYY54qIMAAmYEr

Lakka – a new GUI beginning

thumb

Lakka will appear inside RetroArch starting as of version 1.1. So far, users have been using a very low-fi menu called RGUI. It is perfectly scalable from low-resolution displays to high-definition TVs, but there’s no denying it looks very much like something you would expect from a DOS program.

Lakka will be a more full-featured eyecandy UI. It will require OpenGL support inside the RetroArch version, so expect this to be usable on RetroArch PC and Android/iOS/Blackberry (PS3 maybe if it makes it for v1.1).

In terms of features and appearance, Lakka looks a lot like the PSP’s XMB frontend.

In the future, more menu drivers can be added, each being tailored towards a specific enduser preference. We have made the menu code far more generic to allow for different implementations which doesn’t require the coder to rewrite all the settings logic again and again.

You can watch a video of a prototype in action here – keep in mind that this is still a prototype and that the final version will look a lot more refined. In case you wonder, the guy showcasing it here is one of the authors responsible for the Lakka GUI –  Jean-Andre Santoni (known also as kivutar).

Audio DSPs / Software Video Filters

We already touched upon this in the previous blog post about RetroArch v1.0.0.3 (which has now morphed into version 1.1). This feature has been implemented and it makes it possible to apply audio DSP filters and video software fitlters to RetroArch’s audio/video output.

Blackberry 10

We received a Blackberry Z10 phone from Blackberry sometime ago. In return, we will fully support Blackberry 10 starting as of v1.1. A new audio driver has been written, ALSA QNX, which should be far more optimal than the OpenAL driver we had before. We also intend on writing a nice Qt UI which wraps around RetroArch itself.

I know there has been a lot of discontent among Blackberry users that there have been so few releases, but rest be assured, we’re working on it.

Revamped iOS / OSX ports

I finally bought a Macbook Pro, and so I’ve been spending a lot of work on the OSX / iOS ports of RetroArch as of late. We’ve revamped nearly all of the settings so that it is possible for settings to be exposed to WIMP menus. This will be put to good use in the OSX / iOS ports of RetroArch.

The iOS version will be totally revamped as well. Cjori was working with me sometime ago on Controllers For All support. Hopefully I will be able to approach him a week before release time or so that we can do some final beta testing before we put the final polished version out.

X-Arcade Tankstick support

xarcade

I received an X-Arcade Tankstick courtesy of Xgaming, and in return this device will be fully supported. Android support will be added, and I will also look into making it possible to bind it in RetroArch as two separate game controllers instead of it being recognized as a keyboard.

After v1.1, I will look into adding USB input drivers for the PlayStation3, Wii and Xbox 360 ports so that we will be able to use the X-Arcade Tankstick on thosee consoles as well without using their proprietary gamepad converter (which costs an additional $30).

Revamped Android port

Lots of work still remaining on the Android Port. The input code has been totally revamped and it should be possible to map a new gamepad directly from the menu. New input overlays have also been made (such as a a default RetroPad overlay) which works quite well.

Maybe if we make it in time we can revamp a lot of the UI code as well using our new generalized settings code which should prevent code duplication issues in the future.

Improvements to existing cores

Lots of improvements have been made to Mupen64Plus since the last new release, as well as a lot of other cores. We will also try to bring over the MAME/MESS 2014 cor e to Android – this might not appear on the Google Play Store since this will increase the APK size by about 150MB or so – instead a more fully featured version might be available on our new website.

New server

Starting with the release of v1.1, there will be another big change – a new server (Virtual Private Server), and with it will come a buildbot. We will finally have the ability to do continuous integration tests and have daily builds for the cores and the RetroArch platform versions. The existing website will soon be moved over to the new host – the transition will be as seamless as possible to the user, so hopefully you guys won’t notice when we finally make the switch.

So when will it come?

The rest of this month will be spent by me and others feverishly working to get all of this stuff in a presentable state. We also want to do a fair bit of Quality Assurance so that this next big version will be very solid. The estimated release is somewhere in early September. A new release is contingent on all these different factors all coming together. In case some parts might take longer than expected, we might just drop a version of v1.1 with some of these features being added later. In any case, you shouldn’t have to wait longer than early September.  Again, we’re sorry for some of the delays and announcements from before but we’re really trying to ensure here that this next RetroArch release will be a real big gamechanger and so the delays are justified from that perspective. Hopefully you’ll agree once it is dropped.

Also, I’m sure I neglected to mention a fair few new features as well in this writeup. In any case, there have been far too many changes since February of this year to sum up in one blog post. When v1.1 hits I will put up a more comprehensive overview of everything that has been added ,changed and improved.

RetroArch next release and more

By Squarepusher

It’s been a long time since the last release, and it’s been a long time since any news has been posted period.


The relaunch

So, first things first – yes, there will be a new release soon. I’m conflicted on whether to call it RetroArch 1.0 but I think we might as well get it over with so that we can have some kind of sane versioning from here on out.

We will relaunch on the Google Play Store. We still don’t know why we were pulled from the Play Store the last time, we never got a response from Google telling us the exact reason why they pulled us, and while this all sucks really badly and quite frankly makes me have second thoughts about committing myself too much to Google’s app store, we will try again. This time we have taken a few contingency measures –

  • Some GPL purists seem to want the option of being able to only have cores in RetroArch that are GPLv2 and/or GPLv3, but no cores which use proprietary non-commercial licenses. Rumor has it that this even led to RetroArch’s takedown from the Google Play store – the argument being cited was “license violation”. While it’s a quite spurious argument and I would have liked Google to have contacted me first so that I could have at least given my side of the story, we will meet these people half-way this time.

    After the app gets installed, a popup disclaimer will show up. This asks you whether to remove the non-GPL licensed cores or whether to keep them. This is a permanent option and the only way to undo this is to get rid of your ‘user settings’ – upon which you get greeted with the same disclaimer again.

  • The logo has been redesigned by Agnes Heyer and it’s no longer a bog-standard Space Invaders icon. This is in case the takedown was over some copyright claim over the Space Invaders imagery being used. It’s still an invader, but at least it has a distinctive enough art style now as to make it “different enough”. Agnes also supplied us with some very nice handdrawn art that we’ll be using on the Google Play store.
  • Images from games running in RetroArch Android will no longer be on the store listing. Just in case we got pulled over that alone.

Anyway, hopefully this is sufficient to address all possible issues. Let it be said that if we get pulled again after this re-launch and Google doesn’t even have the decency to give us an e-mail explaining why they took it down, that will be it for me – I’m not going to continue republishing on the Play Store just because Google entertains random accusations of “license violations/copyright infringement” of whomever wants the app pulled. Google’s ‘public relations’ is quite frankly atrocious, not to mention insulting and demeaning since publishing apps on the Google Play Store is not free – we had to pay 25 dollars to be granted the “honor” by Google to get people to actually be able to install your app on their phones/tablets. Now granted, this is not yet as bad as Apple, but freedom this most certainly is not. I expect at least some very basic customer support for those 25 dollars instead of some “automated web form” that leads to nowhere.

Libretro/RetroArch going beyond traditional games/emulators

Anyway, with that negativity out of the way, I am very excited to finally uncover what I and others have been working on these past few months during the blackout. I have always maintained that RetroArch and libretro is about ‘more’ than just emulators and game ports, but to date there was not much to show for this claim.

I look at RetroArch not merely as a “frontend” for an application API, but also as a truly crossplatform architecture – something that abstracts input/video/audio/location/camera streams and lets you – the app creator – easily make use of these various streams to create very rich, full-featured applications without having to worry about which platform you’re developing for. Any game and/or emulator out there needs at least input/video/audio streams, and libretro/RetroArch so far has been catering to this need for a good few years now.

However, ever since the Wii and things like Kinect/PS Move, the videogames world is no longer as rigidly defined as it used to be, and some videogames are not even “videogames” anymore. Or, to put it more simply, just like art, nobody knows what a videogame is anymore. Thanks to motion sensors, cameras, and location-based sensors, we can do reasonably cool new things with a traditional 3D videogames engine that we simply weren’t able to do years ago because of the devices simply not having these kinds of hardware features at their disposal, and the infrastructure not being there.This kind of technology allows us to make stuff that can’t easily be shoehorned into pre-existing “game genres” like beat ’em ups, adventure games, RPGs, and so on.

So you’ve got things like augmented reality now establishing themselves thanks to mobile phones and tablets, and you’ve got peripherals like Occulus Rift resurrecting Virtual Reality from that early ’90s grave. You’ve got Sony dabbling with Augmented Reality on PS Vita and trying to get people energized and excited about that platform to no avail. What all these things have in common is that there’s no real easy way for a developer to be able to target all that technology here with ‘one codebase’, ‘one app’, through some ‘common’ interface. If you want to make a game/app utilizing all this stuff for most of the mainstream platforms out there (PC/Android/iOS/etc), you better be ready to invest some serious time into delving into every conceivable API there is and trying to work around insane platform limitations. There’s a big window of opportunity here to create a nice, crossplatform way to tap into all these features without having to resort to big, bloated APIs that all have to be duct-taped together to achieve the desired app.

For instance, if you want to develop a native app for Android right now that utilizes the camera and location services, you can forget about any easy NDK API interfaces being there. It’s all on the Java side and you’re just expected to come up with a big ‘hack’ which of course is not published anywhere. I had a look at the way OpenCV made camera access from the NDK possible and it just was not what I wanted – it was basically a big hack job in native land that would never really be scaleable and would require continuous maintenance. I also didn’t like how I needed to pull in this big monstrous SDK just to be able to access the camera.

So we came up with our own solution for this. It’s a basic JNI shim job and it’s compatible from Android 3.0 up to the latest Android version right now – 4.4.4.2. And it’s very, very fast. You basically pass a GL texture ID from C land to the RetroArch Java frontend side – it uses this ID for binding the camera framebuffer texture, and from there you can do with this camera texture whatever you want from within the confines of your libretro app.

We have made an example core that can instantiate a large amount of cubes with each face showing the camera screen. The only dependencies here are that it’s a libretro GL core, and that it runs from within RetroArch Android. There is no dependency on OpenCV, on any external “native C” camera shim driver library, etc.

The same goes for location APIs – it can’t be accessed from the NDK normally.

RetroArch slowly becoming suitable for AR applications

RetroArch Android – a camera test core that shows a collection of cubes all displaying the camera frame in real-time.
Here is where RetroArch comes in. Just like how input, video, audio have been abstracted and drivers have been written and implemented per platform – so too do we now have camera and location service driver implementations inside RetroArch.

The big plus point here is that you can write a core utilizing this stuff in a very platform-agnostic way – the only thing you have to worry about is implementing a bunch of callbacks, and RetroArch (the frontend implementing the libretro API) does the rest. You don’t have to worry about the Android camera driver behaving differently from the iOS camera driver and vice versa – you don’t have to worry about Android’s location API or the iOS/OSX location API – that all is handled by the frontend, you don’t need to worry about it. But you can still get access to location data streams and camera streams now all the same from within your GL app – with minimal effort.

Just like with the camera, Proofs-of-Concept have been made that demonstrate both GPS functionality working and camera functionality working. They tick all the boxes that to me define RetroArch – cross-platform, portability, fast, and above all, clean and slimline. The camera works on Linux (Video4Linux2), for the Emscripten WebGL port, iOS, and Android. The location interface has two implementations – one for Android (through the Google Play Services), and an Apple implementation that works for both OSX and iOS (in OSX’s case it should be even backwards compatible from Snow Leopard and up). Portability – in that both the camera and the location functionality gets exposed to the core through the libretro API. So the job of having to implement all this location functionality for every platform is totally outsourced to the frontend side – you don’t even have to think for that matter about your app being “for Android” or “for iOS”. Performance in that the camera driver that has been implemented for both iOS and Android is as fast as it could be. You’re simply binding the camera framebuffer to a GL texture ID and then re-routing that back to the libretro core where you’re able to do with this texture whatever you want – you could turn it into a skybox, or you could render it on top of every cube – and even instance those cubes (2 to the power of 16 no less) while still getting very high performance.

I’m fairly confident that with a few more tests we can easily demonstrate the potential of the libretro API to the outside world as something that is far more significant than simply “something that allows you to port emulators in a cross-platform way”, and I’m quite excited about being very close at realizing that goal. Existing users should not take this as a sign that the stuff they care about – emulators/games – is going to play a diminishing role – this is about being all-inclusive, about creating a big entertainment platform that allows the developer to do whatever he wants his multimedia applications to do.

Emulators

So, where does this leave the emulation side? The stuff most people still care about when it comes to RetroArch? Well, the Mupen64 libretro core has been steadily improving – right now most effort has been focused on improving the Glide64 video plugin. I still would have preferred things to be even more solid at this point but I’d say it is getting close for a first release – people should be aware anyway that this is a continual “Work In Progress” and that improvements will be made on an ad-hoc basis.

Anyway, I can’t quite keep track of all the cores that have been added since, nor do I really know whether it’s wise to dump in the MAME 2013/2010 cores into the main package since the MAME 2013 core alone is 123MB in size. This wouldn’t go down well with a number of users that have complained about RetroArch’s filesize – and the more cores that will get added, the bigger a problem that will be. Perhaps expansion APKs are a temporary solution but eventually I think we will need to have the equivalent of a ‘package manager’ within the app that can pull in cores remotely. I’m not sure who would have to do the hosting though because we already tried that approach once for the Windows port and it turned out to be both unmaintainable and too expensive – server cost-wise.

When the release gets made, I may do a backlog throughout all the updates that have happened this past half year so people have a better overview of exactly is new. Hopefully that time will be soon. As a post-mortem I will follow up the release (when it happens) with a post that covers all the UI improvements (and other improvements) that have been made.